RUBBER DIAPHRAGM

1. RUBBER TO METAL

Rubber to metal diaphragms or membranes are currently supplied with metal inserts into the gas and food industry, rubber blocks with metal support are supplied into the Subsea market. Rubber components \& Rubber seals are manufactured to existing customer requirements. Component size varies from a few grams to large couplings used in drive industry weighing over 25 Kg . Couplings can be manufactured utilizing bonded metal that operate with rubber in compression, or rubber in shear, with expert metal preparation, and quality control, our rubber products last through material guidance and understanding of operating conditions, Western Polyrub is able to design Rubber formulas around customer demands.

2. FABRIC RENIFORCEMENT

Cylinder Diameter	$\begin{gathered} .025 \\ \text { to. } 99 \\ \text { to } 25 \end{gathered}$	$\begin{gathered} 1.00 \text { to } \\ 2.50 \quad 25 \text { to } \\ 64 \end{gathered}$	$\begin{gathered} \hline 2.51 \text { to } \\ 4.00 \quad 64 \\ \text { to } 102 \end{gathered}$	$\begin{gathered} 4.01 \text { to } \\ 8.00 \quad 102 \text { to } \\ 205 \end{gathered}$	$8.01 \&$ up $\quad 205 \&$ up
Height	See available sizes table.				
Cylinder Diameter Piston Diameter	Tolerances on Cylinder Diameter and piston Diameter are _+_.010" per inch of diameter but the tolerance will be no less than _+.010" or greater than_+.060"				
Head Thickness \& Flange Thickness	$\begin{gathered} .015++.003 \\ 0.38 \\ -+0.08 \end{gathered}$	$\begin{gathered} .017 __{0}^{+} \\ .0044^{0.43} \\ \mathbf{-}^{+0.10} \end{gathered}$	$\begin{gathered} .024-_{0}^{+} \\ .004 \quad 0.61 \\ { }_{-}^{+0.10} \end{gathered}$	$\begin{gathered} .035 ـ^{+} \\ .0050 .89 \\ { }_{-}+0.13 \end{gathered}$	$\begin{gathered} .045 _^{+} \\ .0071 .14 \\ { }_{-}+0.18 \end{gathered}$
Wall Gauge	$\begin{gathered} \hline .015+.003 \\ 0.38 \\ ++0.08 \\ \hline \end{gathered}$	$\begin{gathered} .017 \mathbf{-}^{+} \\ .004 \quad 0.43 \\ { }^{+}+0.10 \end{gathered}$	$\begin{gathered} .024{ }^{.}+ \\ .004 \quad 0.61 \\ +0.10 \end{gathered}$	$\begin{gathered} .035 _^{+} \\ .005 \quad 0.89 \\ { }^{+}+0.13 \end{gathered}$	$\begin{gathered} .045-^{+} \\ .007 \quad 1.14 \\ { }^{+}+0.18 \end{gathered}$
Piston Radius	$\begin{array}{\|ccc} \hline 0.94 & 2.3 \\ & 9 & \end{array}$. 1253.18	. 156.96	. 2506.35	. 2506.35
Flange Radius	.031 .79	. 0631.60	. 0942.39	. 1253.18	. 1253.18
Flange Diameter	$\begin{gathered} \text { Cyl } \\ \text { Diam.+. } 750 \\ \text { Cyl } \\ \text { Diam.+19.0 } \\ 5 \end{gathered}$	Cyl Diam.+1" yl Diam. +25.40	$\begin{gathered} \text { Cyl } \\ \text { Diam. }+1.500 " \\ \text { Cyl } \\ \text { Diam. }+38.10 \end{gathered}$	Cyl Diam.+2" Cyl Diam. +50.80	```Cyl Diam.+2" Cyl Diam.+50.80```

The Type WD - 01 is commonly referred to as the "top hat" diaphragms. It exhibits all of the benefits that are associated with rolling diaphragms. These diaphragms have the longest stroke-to-bore ratio, zero spring rate, no breakaway friction, constant effective pressure area, and long life. Some of the drawbacks to Type WD-01 diaphragms are additional assembly time required when inverting the top head corner radius during installation, and an inability to withstand reverse pressure. The flange of the type WD01 diaphragm is designed to seal like a gasket between the two flat surfaces of the cylinder and bonnet. The outside edge and bolt holes can be cut into any configuration desired. An effective seal should be obtained by compressing the flange area $20-30 \%$ by thickness. To extend cycle life and reduce "four-cornering" of the diaphragm, a double taper design may be utilized (see Figure 1). This design reduces the diameter of the bottom end of the diaphragm which minimizes excess material in this area and realizes circumferential compressive stress.

Diaphragm Flange Diameter and Hole Trim

 Tolerances:| Diameter | Size | | Position | |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{rr} \hline 0-1.00 " & .0- \\ 25.40 & \end{array}$ | _+.010' | 0.25 | 010 | 0.25 |
| $\begin{gathered} 1.01- \\ 3.00 \quad 25.65- \\ 76.20 \\ \hline \end{gathered}$ | _+. 020 | 0.51 | . 020 | 0.51 |
| over 3.01" over 76.45 | _+.030' | 0.76 | . 030 | 0.76 |
| Angular relationship of holes: _+ 1/2 degree. | | | | |

info@westpolyrub.com
www.westpolyrub.com

Hole Spacing for type WD-01

Perforations through the head or the flange should be located so that there is at least 100 inches minimum between the edges of holes. Also, holes should be located so that there is at least . 125 inches between the edge of a hole and trim periphery.It is also important to arrange the hole pattern so that the radial distance from the edge of the hole to the start of the blend radius at either the piston head or cylinder clemp flange is at least as far as indicated in the chart above.

Max. Working Pressure (P.S.I)/KPA	$\begin{gathered} (0-50) \\ 350 \end{gathered}$		$\begin{gathered} \text { 150) }{ }_{1050} 357- \end{gathered}$		$\begin{gathered} (151- \\ 200) \quad 1057- \\ 2100 \end{gathered}$		$\begin{aligned} & \text { (301- } \\ & 200) \\ & 2107- \\ & 3500 \end{aligned}$	
Seal Area Minimum (Inches)	. 100	2.54	.. 150	3.81	. 200	5.08	. 250	6.35

In this style, the piston and the flange are molded on the same plane. The benefit of this style is that the handwork of forming the convolution is eliminated, which greatly reduces the assemblybtime. This would be if importance in high volume applications. The drawbacks to this type of diaphragm are;a built-in spring rate,due to the molded-in convolution, which must be considered during the design stage, and a limited stroke-to-bore ratio. To improve this ratio, an offset pre-convoluted diaphragm can be designed (see WD-01 Offset figure at bottom of page). In this shape, the piston head and flange are milded offset to each other, thereby putting all the additional stroke capabilities on one side of the convolution.This provides a longer stroking diaphragm which still maintains the assembly ease of a preconvoluted diaphragm

Cylinder Diameter	$\begin{gathered} .025 \\ \text { to. } 99 \\ \text { to } 25 \end{gathered}$	$\begin{gathered} 1.00 \text { to } \\ 2.50 \quad 25 \text { to } \\ 64 \end{gathered}$	$\begin{aligned} & 2.51 \text { to } \\ & 4.0064 \\ & \text { to } 102 \end{aligned}$	$\begin{gathered} 4.01 \text { to } \\ 8.00 \quad 102 \\ \text { to } 205 \end{gathered}$	$\begin{gathered} 8.01 \& \\ \text { up } 205 \\ \& \text { up } \end{gathered}$
Height		See	ailable siz	able.	
Cylinder Diameter Piston Diameter	Tolerances on Cylinder Diameter and piston Diameter are _+_.010" per inch of diameter but the tolerance will be no less than _+.010" or greater than _+.060"				
Head Thickness \& Flange Thickness	$\begin{gathered} .015++.0 \\ 030 . \\ 38 \\ -+0.08 \end{gathered}$	$\begin{gathered} .017 __{0}^{+} \\ .004 \\ 3 _+0.10 \end{gathered}$	$\begin{gathered} .024 _^{+} \\ .0040 .6 \\ 1 _+0.10 \end{gathered}$	$\begin{gathered} .035 ـ^{+} \\ .0050 .89 \\ \mathbf{n}^{+0.13} \end{gathered}$	$\begin{gathered} .045 _^{+} \\ .007 \\ 14 _+0.18 \end{gathered}$
Wall Gauge	$\begin{gathered} .015++.0 \\ 030 . \\ 38 \\ ++0.08 \\ \hline \end{gathered}$	$\begin{gathered} .017 __{0}^{+} \\ .004 \\ 3 _+0.10 \end{gathered}$	$\begin{gathered} .024 _^{+} \\ .0040 .6 \\ 1 _+0.10 \end{gathered}$	$\begin{gathered} .035 ـ^{+} \\ .0050 .89 \\ \mathbf{-}^{+0.13} \end{gathered}$	$\begin{aligned} & .045 _^{+} \\ & .007 \\ & 14 _+0.18 \end{aligned}$
Piston and Flange Radius	$\begin{array}{r} .031 \\ 79 \end{array}$	$0_{0}^{.063}$	$\begin{array}{cc} .094 & 2.3 \\ 9 \end{array}$. 125.18	$\begin{array}{cc} .125 \\ 18 \end{array}$
Flange Diameter	Cyl Diam.+. 7 $50 \quad$ Cy । Diam. +19 .05	Cyl Diam.+1" Cyl Diam.+25.4 0	$\begin{gathered} \text { Cyl } \\ \text { Diam.+1.50 } \\ \text { 0" Cyl } \\ \text { Diam.+38.1 } \\ 0 \end{gathered}$	$\begin{gathered} \text { Cyl } \\ \text { Diam.+2" } \\ \text { Cyl } \\ \text { Diam.+50.80 } \end{gathered}$	$\begin{gathered} \text { Cyl } \\ \text { Diam.+2" } \\ \text { Cyl } \\ \text { Diam.+50. } \\ 80 \end{gathered}$

info@westpolyrub.com

Diameter	Size	Position
$\begin{array}{cc} 0-1.00 " & .0- \\ 25.40 \end{array}$	$\begin{array}{rr} +.010 " & .25 \\ \hline \end{array}$. 010.254
$\begin{gathered} 1.01- \\ 3.00 " 25.65- \\ 76.20 \end{gathered}$	$\begin{array}{rr} \hline+.02011 & .50 \\ 8 & \end{array}$. 020.508
$\begin{gathered} \text { over } \\ 3.01 "{ }^{\text {" }} 76.45 \end{gathered}$	$\begin{array}{r} +.030 " \\ 2 \end{array}$. 030.762
Angular relationship of holes: _+ 1/2 degree.		

Diaphragm Flange Diameter and Hole Trim Tolerances:

山ン

This diaphragm type, commonly referred to as dish-shaped, has a sidewall that slopes gradually from the cylinder to the piston.This diaphragm is designed to be flexed in both driections to its full height. It may be double-coated to take pressure in both directions. Due to its wide convolution and gradual sidewall slope, the total travel and abliity to withstand high pressures are limited. The effective pressure also varies through its stroke.

WD-04

Hardware Recommendations

This type of diaphragm has a rectangular bead molded inside the cylinder wall. This design requires the smallest hardware diameter of any diaphragm type. This type of diaphragm has only half the stroke capability of other diaphragm styles of the same height. Because the clamping and sealing of this style diaphragm is against the inside wall of the cylinder, the stroke is restricted to the lower half of the diaphragm

Stamped Retainer Plate Sealing Via Axial Compression

Cast Machined Retainer Plate Sealing Via Radial Compression

info@westpolyrub.com

Cylinder Diameter	$\begin{array}{\|rr\|} \hline 1.00-2.50 & 25- \\ 64 & \\ \hline \end{array}$	2.51-4.00 64 to 102	8.01 \& up 205 \& up
Bead Diameter	. 1213.07	. 1513.84	. 2426.15
Convolution Width	. 0942.39	. 1563.96	. 2506.35
Flash Projection	$\begin{array}{\|ll} & 0.020 \\ \text { Max } & 0.51 \mathrm{Max} \end{array}$	$\begin{gathered} .0 .030 \operatorname{Max}^{\text {Max }} \\ 0.76 \\ \hline \end{gathered}$	0.040 Max 1.02 Max
Flash Thickness	$\begin{array}{\|l} \\ \\ \\ \text { Max } \\ 0.020 \\ 0.51 \text { Max } \end{array}$	$\begin{gathered} .0 .030 \text { Max }_{\text {Max }} \\ 0.76 \\ \hline \end{gathered}$	0.040 Max 1.02 Max
Wall Gauge	0170.43	. 0240.61	. 0350.89
Piston Radius	. 0631.60	. 0942.39	. 1253.18
Piston Diameter	$\begin{aligned} & \text { Cyl Diam. } \\ & \text { less.188" Cyl } \\ & \text { Diam.less4.78 } \end{aligned}$	$\begin{gathered} \text { Cyl Diam. } \\ \text { less.313" Cyl } \\ \text { Diam.less7.95 } \end{gathered}$	$\begin{array}{cc} \text { Cyl Diam. less.500" Cyl } \\ \text { Diam.less12.70 } \end{array}$
Flange Radius	. 0320.81	. 0471.19	. 0631.60

Type \mathbf{O} - This type of

 diaphragm has no flange. An O-ring is molded to the bottom of the sidewall. Unlike the other types of diaphragms, the Type O is put into convolution by folding the sidewall back onto itself. The bead is then squeezed into a groove machined into the bonnet half of the hardware. This type enable the greatest reduction in hardware diameter, while keeping a full stroke potential
Type OA - This

diaphragm type is a second generation to the Type 0 . It fits into identical hardware. It differs from the Type O in that its sidewall attaches to the inside diameter of the Oring and the fabric is on the outside, requiring the head corner radius to be inverted for installation. The Type OA tends to be easier to install, but basically the difference is personal preference.

HARDWARE DESIGN

Cylinder Diameter	Bead Groove Width =W	Bead Groove Height $=\mathrm{H}$	Flange \& Piston Corner Radi = R1 \& R2	$\begin{aligned} & \text { Lip Radius } \\ & \text { R3 } \end{aligned}$	Lip Height L
$\begin{aligned} & 1.00- \\ & 2.50 \quad 2 \\ & 5 \text { to } 64 \end{aligned}$	$\begin{array}{rr} .125 & 3 \\ .18 & \end{array}$	$\begin{array}{rl} .0 .96 & 2 . \\ 43 & \end{array}$	$.0631 .$	$.025{ }_{3} \begin{aligned} & 0.6 \end{aligned}$	$\begin{array}{cc} .100 & 2 \\ .54 & \end{array}$
$\begin{aligned} & 2.51- \\ & 4.00 \\ & 4 \text { to } 102 \end{aligned}$	$\begin{array}{rr} .156 & 3 \\ .96 \end{array}$	${ }_{10} 3 .$	$\begin{array}{rl} .094 & 2 . \\ 39 \end{array}$	$\begin{array}{cc} .032 & 0.8 \\ 1 \end{array}$	$\begin{array}{\|cc} .130 & 3 \\ 30 \end{array}$
$\begin{aligned} & 4.01- \\ & 8.00 \quad 1 \\ & 02 \text { to205 } \end{aligned}$	$\begin{array}{cc} .250 \\ 35 \end{array}$	$\begin{array}{cc} . \\ 98 \end{array}$	$\begin{array}{cc} .125 \\ 18 \end{array}$	$.0454{ }_{4} .$	$\begin{array}{cc} .204 & 5 \\ .18 \end{array}$
$\begin{aligned} & 8.01 \text { and } \\ & \text { up } 205 \\ & \text { to up } \end{aligned}$	$\begin{array}{rr} .250 & 6 \\ .35 \end{array}$	$\begin{gathered} .196 \\ 98 \end{gathered}$	$\begin{gathered} .121 \\ 18 \end{gathered}$	${ }_{4} 045$	$\begin{array}{cc} .190 & 4 . \\ 83 \end{array}$

This style diaphragm is similar in function to the Type WD-02 diaphragm, while the sealing and hardware designs are the same as the Type WD-08

WD-07

Cylinder Diameter	. 37 to . 99 9 to 25	1.00 to $2.50 \quad 25$ to 64	$\begin{array}{\|cc\|} \hline 2.51 \text { to } 4.00 & 64 \text { to } \\ 102 & \\ \hline \end{array}$	$\begin{gathered} 4.01 \text { to } 8.00 \\ \text { to } 205 \end{gathered}$	$\begin{aligned} & 8.01 \& \text { up } \\ & \text { \& up } \end{aligned} 205$
Height	See available sizes table.				
Cylinder Diameter Piston Diameter	Tolerances on Cylinder Diameter and piston Diameter are _+_.010" per inch of diameter but the tolerance will be no less than _+.010" or greater than _+.060"				
Head Thickness \&Flange Thickness	$\begin{array}{ll} .003 & 0.38 \\ +0.08 & \end{array}$	$\begin{array}{cc} .017 \\ \text { _ }+.004 & 0.43 \\ +0.10 & \end{array}$	$\begin{array}{ll} & .024]^{+} \\ .004 & 0.61++0.10 \end{array}$	$\begin{gathered} .035 ـ^{+} \\ .005{ }^{0} 0.89 \\ { }^{+}+0.13 \end{gathered}$	$\begin{gathered} .045 ـ^{+} \\ .007 \quad 1.14 \\ { }^{+}+0.18 \end{gathered}$
Wall Gauge	$\begin{gathered} 015++.003 \\ ++0.08 \end{gathered} 0.38$	$\begin{array}{cc} .017 \\ \underset{\sim}{+}+.004 & 0.43 \\ +0.10 & \end{array}$	$\begin{array}{\|cc} & .024 _^{+} \\ .004 & 0.61++0.10 \end{array}$	$\begin{gathered} .035 ـ^{+} \\ .0050 .89 \\ { }^{+}+0.13 \end{gathered}$	$\begin{gathered} .045 ـ^{+} \\ .007 \quad 1.14 \\ { }^{+}+0.18 \end{gathered}$
Flash Projection	. 025 Max 0.64 Max	. $025 \mathrm{Max} \quad$ 0.64 Max	$\begin{gathered} .035 \text { Max }_{\text {Max }} \\ 0.89 \end{gathered}$	$\begin{gathered} .040 \text { Max }_{\text {Max }} \\ 1.02 \end{gathered}$	$\begin{array}{cc} .056 \operatorname{Max}_{\text {Max }} & 1.42 \\ \end{array}$
Flash Thickness	. 025 Max 0.64 Max	. $025 \mathrm{Max} \quad 0.64 \mathrm{Max}$	$\begin{gathered} .035 \operatorname{Max}_{\text {Max }} \\ 0.89 \end{gathered}$	$\begin{gathered} .040 \operatorname{Max}_{\text {Max }} \\ 1.02 \end{gathered}$	$\begin{array}{cc} .056 \operatorname{Max}_{\text {Max }} & 1.42 \\ \end{array}$
Piston /Flange Radius	. 031.79	. 0631.60	$0.94 \quad 2.39$. 1253.18	. 1253.18
Flange Diameter	$\begin{gathered} \text { Cyl Diam.+. } 313 \text { Cyl } \\ \text { Diam. }+7.95 \end{gathered}$	$\begin{aligned} & \text { Cyl Diam. }+.500 \text { Cyl } \\ & \text { Diam. }+12.70 \end{aligned}$	$\begin{gathered} \text { Cyl } \\ \text { Diam.+. } 750 \text { Cyl } \\ \text { Diam. }+19.05 \end{gathered}$	$\begin{gathered} \text { Cyl } \\ \text { Diam. }+1 \text { " Cyl } \\ \text { Diam. }+25.40 \end{gathered}$	$\begin{gathered} \text { Cyl } \\ \text { Diam. }+1 \text { " Cyl } \\ \text { Diam. }+25.40 \end{gathered}$
Bead Width	$\begin{array}{cc} .095 & 2.41 \\ + \\ + & .004 \\ +0.10 & \end{array}$	$\begin{array}{ll} & .125++ \\ 3.18++0.08 \end{array}$	$\begin{array}{cc} .187 _+.003 \\ \text { _+0.08 } \end{array} 4.75$	$\begin{gathered} .250 _^{+} \\ .0036 .35 \\ { }^{+}+0.08 \end{gathered}$	$\begin{gathered} .250 ـ^{+} \\ .0046 .35 \\ { }^{+}+0.10 \end{gathered}$
Bead Height	$\begin{array}{cc} .095 & +.004 \\ + & 2.41 \\ +0.10 & \end{array}$	$\begin{array}{cc} .135 _ \\ + \\ + & .004 \\ +0.10 & \end{array}$	$\begin{gathered} 200 _+\underset{ }{+}+0.13 \\ \\ \end{gathered}$	$\begin{gathered} .270 ـ^{+} \\ .0066 .86 \\ { }^{+}+0.15 \end{gathered}$	$\begin{aligned} & .2700^{+} \\ & 6.86++0.2 \\ & 0 \end{aligned}$

Cylinder	$.025-.99$	$6-25$	$1.00-2.50$	$25-64$	$2.51-4.00$	$64-102$	$4.01-8.00$

Groove Width

Groove Width $\mathbf{-}^{+} .003 \quad 0.08{ }^{+}+$. 109	2.77	. 141	3.58	. 219	5.56	. 281
Groove Height $\text { + . } 002 \text { 0.05_+ }$. 076	1.93	. 108	2.74	. 160	4.06	. 216
Lip \& Piston Corner Radii	. 031	0.79	. 063	1.60	. 094	2.39	. 125
Lip Width _ . $003 \quad 0.08{ }_{\text {_ }}+$. 062	1.57	. 125	3.18	. 187	4.75	. 250
$$. 021	0.53	. 021	0.53	. 031	0.91	. 036

info@westpolyrub.com

WD-08

The parts are molded with what equates to half of an O-ring on the flange rather than a large that surface.This O-Ring half its into a groove machined into the cylinder half of the hardware. Sealing is achieved by squeezing the bead into a properly sized groove (see table at bottom of page). The cylinder and bonnet can then be designed to make positive contact when assembled, eliminating the need for a closely controlled assembly torque. It also reduces the overall diameter of the dianhragm, reducing the hardware diameter

Cylinder Diameter	025-. 99	6-25	1.00-2.50	25-64	102		$\begin{array}{r} 4.01-8.00 \\ 20 \end{array}$	$102 \text { - }$	$8.01 \& \text { up }$	$205 \text { \& }$
$$. 109	2.77	. 141	3.58	. 219	5.56	. 281	7.14	. 281	7.14
$\begin{aligned} & \text { Groove Height } \\ & +.002 \\ & \hline \end{aligned} 0.05+1$. 076	1.93	. 108	2.74	. 160	4.06	. 216	5.49	. 216	5.49
Lip \& Piston Corner Radii	. 031	0.79	. 063	1.60	. 094	2.39	. 125	3.18		
. 1253.18										
$$. 062	1.57	. 125	3.18	. 187	4.75	. 250	6.35	. 250	6.35
$$. 021	0.53	. 021	0.53	. 031	0.79	. 036	0.91	. 048	1.22

Height	See available sizes table.				
Cylinder Diameter	Tolerances on Cylinder Diameter and piston Diameter are _+_.010" per inch of diameter but the tolerance will be no less than _+.010" or greater than _+.060"				
Head Thickness \&Flange Thickness	$\begin{array}{cc} .015++.003 & 0.38 \\ +0.08 & \end{array}$	$\begin{array}{rr} .017 & +.004 \\ + & 0.43 \\ +0.10 & \end{array}$	$\begin{array}{ll} .024 _^{+} \\ .004 & 0.61 \end{array}$	$\begin{gathered} \hline .035 _^{+} \\ .0050 .89 \\ +0.13 \\ \hline \end{gathered}$	$\begin{gathered} .045 ـ^{+} \\ .0071 .14 \\ +0.18 \\ \hline \end{gathered}$
Wall Gauge	$\begin{gathered} 015 _+.003 \\ \text { _+0.08 } \end{gathered}$	$\begin{aligned} .017 & +\begin{array}{c} . \\ + \\ +0.10 \end{array} \end{aligned}$	$\begin{array}{ll} .024 _+ \\ .004 & 0.61 _+0.10 \end{array}$	$\begin{gathered} .035 _^{+} \\ .005 \quad 0.89 \\ +0.13 \end{gathered}$	$\begin{gathered} .045{ }_{-}^{+} \\ .0071 .14 \\ +0.18 \\ \hline \end{gathered}$
Flash Projection	. $025 \mathrm{Max} \quad 0.64 \mathrm{Max}$. 025 Max 0.64 Max	.035 Max 0.89 Max	$\begin{array}{cc} .040 \text { Max } & 1.02 \\ \text { Max } & \end{array}$.056 Max 1.42 Max
Flash Thickness	. $025 \mathrm{Max} \quad 0.64 \mathrm{Max}$. $025 \mathrm{Max} \quad 0.64 \mathrm{Max}$	$\begin{array}{cc} \hline .035 \text { Max } & 0.89 \\ \text { Max } & \\ \hline \end{array}$.040 Max 1.02 Max	.056 Max 1.42 Max
Piston Radius	0.942 .39	. 1253.18	. 1563.96	. 2506.35	. 2506.35
Flange Radius	. 031.79	. 0631.60	. 0942.39	. 1253.18	. 1253.18
Flange Diameter	$\begin{gathered} \text { Cyl Diam.+. } 313 \mathrm{Cyl} \\ \text { Diam.+7.95 } \end{gathered}$	$\begin{aligned} & \text { Cyl Diam.+. } 500 \text { Cyl } \\ & \text { Diam. }+12.70 \end{aligned}$	$\begin{gathered} \hline \text { Cyl } \\ \text { Diam. } 750 \quad \mathrm{Cyl} \\ \text { Diam. }+19.05 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cyl } \\ \text { Diam. }+1 \text { " Cyl } \\ \text { Diam. }+25.40 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cyl } \\ \text { Diam. }+1 \text { " Cyl } \\ \text { Diam. }+25.40 \\ \hline \end{gathered}$
Bead Width	$\begin{array}{cc} .094 & +.39 \\ +0.08 & \end{array}$	$\begin{array}{ll} & .125 _+ \\ . & 3.18++0.08 \end{array}$	$\begin{array}{rr} .187+ \\ \text { _ } .003 & 4.75 \\ +0.08 & \end{array}$	$\begin{gathered} .2500^{+} \\ .0036 .35 \\ +0.08 \\ \hline \end{gathered}$	$\begin{gathered} .250{ }^{+}+ \\ .0046 .35 \\ +0.10 \\ \hline \end{gathered}$
Bead Height	$\begin{array}{cc} .095 & +.004 \\ + & 2.41 \\ \hline \end{array}$	$\begin{array}{cc} . \\ \hline \end{array}$	$\begin{array}{rr} .200+ \\ +.005 & 5.08 \\ +0.13 & \end{array}$	$\begin{gathered} .270 _^{+} \\ .006 \quad 6.86 \\ +0.15 \\ \hline \end{gathered}$	$\begin{array}{ll} \hline .270 \mathbf{-}^{+} \\ .008 & 6.86 _+0.2 \\ 0 \\ \hline \end{array}$

Diaphragm Flange Diameter and

 Hole Trim Tolerances:

In most instances sheets have onward processing to become molded parts. Their uses are in almost all branches of industry as punched or drilled items in, for instance, the automotive industry and in engineering and aircraft construction.

1. Features :-

All current elastomeric materials can be processed. Choice follows according to the respective application.Elastomer sheets can also be manufactured with a PTFE layer as well as with fabric reinforcement. Surface quality can be influenced by grinding or shot blasting.

2. Operating Conditions :-

Media: depends on choice of material
Temperature: between -50 C and 200 C according to material.

3. Production :-

Molded sheets can be supplied in these sizes:
300*300mm,
500*500mm and in the thickness 0,5 to 6 mm .
Special sizes on request.
Continuous production in ordering quantities >50 sheets
Sheet size: up to $490 * 490 \mathrm{~mm}$
Sheet thickness: up to 5 mm
Sheets made from silicone rubber and Fluoro-rubber are produced mainly in dimensions of $300 * 300 \mathrm{~mm}$.
With Shore hardness under 50 grinding is only possible in individual cases.
When sheets are ground or shot blasted the surface quality is heavily dependent on shore hardness and on the base material.

4. Sheets With Fabric Reinforcement For High Operating Pressure :-

The range of fabrics comprise the synthetic type with thickness berween 0,12 and $0,75 \mathrm{~mm}$.

Production Provisions:-

Fabric insert: for operating pressure to both side Fabric layer: for operating pressure to one side Sheets With Fabric Layer :-
One side pressed smooth or one side ground Minimum sheet thickness: 0,5 mm + thickness of fabric Sheets With Fabric Insert :-
Both side pressed smooth or one side ground Minimum sheet thickness: $2^{*} 0,5 \mathrm{~mm}+$ thickness of fabric

5. Sheets With PTFE Layer

Applications:

- With low breakaway forces even after longer standstills
- If higher thermal or chemical resistance is required
- When the surface should be smooth and non-stick
- For low friction co-efficient

One side formed smooth, one side PTFE coating, Minimum sheet thickness : $0.5 \mathrm{~mm}+$ PTFE layer
6. Measurement \& Tolerances Sheet Items Thickness tolerances of molded sheets

Material	Sheets $300 * 300 \mathrm{~mm}$ Without fabric with fabric/PTFE coating		Sheets $500 * 500 \mathrm{~mm}$ Without fabric with fabric/PTFE coating	
NBR	-	-	-	-
SBR	-	-	-	-
CR	$+/-0.10$	$+/-0.15$	$+/-0.15$	$+/-0.20$
VMQ	-	-	-	-
FVMQ	-	-	-	-
EPDM	-	-	-	-
HNBR	$+/-0.15$	$+/-0.20$	$+/-0.20$	$+/-0.25$
FPM	-	-	-	-

7. SHEET DIMENSIONS,TYPE 300*300mm

Thickness (mm)	Type (mm)	Elastomer sheets	fabric reinforcement	Sheets with PTFE coating
0.5	Sheets 300*300	-	\bullet	-
0.6	Sheets 300*300	\bullet	\bullet	\bullet
0.7	Sheets 300*300	-	\bullet	\bullet
0.8	Sheets 300*300	-	-	-
0.9	Sheets 300*300	-	\bullet	\bullet
1	Sheets 300*300	-	-	\bullet
1.1	Sheets 300*300	-	-	-
1.2	Sheets 300*300	-	-	-
1.3	Sheets 300*300	\bullet	\bullet	\bullet
1.4	Sheets 300*300	-	-	-
1.5	Sheets 300*300	-	-	\bullet
1.6	Sheets 300*300	-	-	-
1.7	Sheets 300*300	-	-	\bullet
1.8	Sheets 300*300	\bullet	\bullet	-
1.9	Sheets 300*300	-	-	-
2	Sheets 300*300	-	\bullet	\bullet
2.1	Sheets 300*300	-	-	\bullet
2.2	Sheets 300*300	-	-	-
2.3	Sheets 300*300	-	\bullet	-
2.4	Sheets 300*300	-	-	\bullet
2.5	Sheets 300*300	\bullet	\bullet	-
2.6	Sheets 300*300	-	-	\bullet
2.7	Sheets 300*300	-	-	\bullet
2.8	Sheets 300*300	-	-	-
2.9	Sheets 300*300	-	-	\bullet
3	Sheets 300*300	\bullet	-	\bullet
3.1	Sheets 300*300	\bullet	\bullet	-
3.2	Sheets 300*300	-	-	\bullet
3.3	Sheets 300*300	-	-	\bullet
3.4	Sheets 300*300	-	-	\bullet
3.5	Sheets 300*300	-	-	-
3.6	Sheets 300*300	-	-	-
3.7	Sheets 300*300	-	-	-
3.8	Sheets 300*300	-	-	-
3.9	Sheets 300*300	-	-	-
4	Sheets 300*300	-	\bullet	-

info@westpolyrub.com

4.1	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	\bullet	\bullet	-
4.2	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	-	-
4.3	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	-	-
4.4	$\begin{aligned} & \text { Sheets } \\ & 300 * 300 \end{aligned}$	-	-	-
4.5	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	-	-
4.6	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	-	-
4.7	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	\bullet	-
4.8	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	-	-
4.9	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	-	-
5	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	-	-
5.1	$\begin{aligned} & \text { Sheets } \\ & 300 * 300 \end{aligned}$	-	-	-
5.2	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	-	-
5.3	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	-	-
5.4	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	\bullet	\bullet	-
5.5	$\begin{aligned} & \text { Shets } \\ & 300 * 300 \end{aligned}$	-	-	-
5.6	$\begin{aligned} & \text { Sheets } \\ & 300 * 300 \end{aligned}$	-	-	-
5.7	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	-	-
5.8	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	\bullet	-	-
5.9	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	-	-
6	$\begin{gathered} \text { Sheets } \\ 300 * 300 \end{gathered}$	-	-	-

www.westpolyrub.com

4. HOT WITH FABRIC

In addition to the standard design of long- stroke rolling diaphragms of hat \& cap can also be supplied with or without fabric from special tooling, as per pressure.

1. Features :-

Long-stroke rolling diaphragms are special thin-walled, sensitive diaphragms made from highly elastic materials with fabric reinforcement, and in a special configuration without fabric reinforcement which was developed especially for the requirements of pneumatically-activated measuring, display and regulating equipment.

2. Application :-

Long-stroke rolling diaphragms are used for hydraulically-and-pneumatically-activated control and regulating equipment, pressure switches and pressure translators as well as measuring and display equipment. The unreinforced design is used as separation diaphragms in pressure compensator or for fine regulation in regulators for gas-pressure.

3. Characteristic Properties:-

The low diaphragm thickness and, relative to the diameter, large height of the diaphragm offer the following advantages:-

- Low, almost constant resistance over the entire stroke
- Essentially greater stroke lengths in comparison to traditional diaphragms with the same diameter.
- Effective surface area remains the same over entrie stroke
- No additional resistance when starting up or with change of direction of movement, no rest point in working range
- Low demands on piston and cylinder in comparison to seals.

4. Material :-

Standard material: Acrylo-nitrile-butadiene rubber(NBR) with or without Polyster fabric.Rolling diaphragms made from silicone rubber, Fluoro-rubber and EPDM with fabric are produced up to a height of 12 inch. Special tool are required for Fluoro-rubber. The exact operating conditions should be known for the selection of suitable material.

5. Operating Conditions :-

The standard range made from Nitrile rubber with fabric reinforcement for use in pressurized air allows working pressure up to 10 bar and test pressure up to 15 bar. Special material are available for applications involving natural gas, petrol and brake fluids as well as high temperatures.

6. Fitting :-

Then fabric has to be on the non-pressured side. The diaphragm is inverted before fitting. Should the rolling fold being formed dome up when performing this action, the use of a fitting sleeve becomes necessary. A screwdriver is not to be used!
info@westpolyrub.com

TAFLON PIN

Western now manufactures quality Replacement value Body Diaphragms for use in Saunders Where Style and Straightway Diaphragm Valves designed to meet or exceed the original equipment manufactures specification of fit, from and function, these diaphragms are completely interchangeable. Diaphragms are competitively priced and are in stock and available for immediate shipment.
Western also manufactures 1 piece Teflon (PTFE) faced EPDM Diaphragms that is completely interchangeable with Elastomer diaphragms in size $1^{\prime \prime}-8^{\prime \prime}$. This means you can now upgrade existing values with elastomers diaphragms to Teflon (PTFE) without purchasing a complete new bonnet assembly. Diaphragms are available in size $1 / 2^{\prime \prime}$ through 12 "in the following materials

Western now offers quality replacement value body diaphragms for use in Saunders KB style Straightway and High flow style Straightway diaphragm valves. Designed to meet or exceed the original equipment manufactures specification of fit, form and function, these diaphragms are completely interchangeable. Diaphragm's are competitively priced and are in stock, available for immediate shipment.

4" EPDM

2" Chlorobutyl

6" Natural Rubber

3" Neoprene

8" Chlorobutyl

